Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anticancer Agents Med Chem ; 22(18): 3163-3171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692152

RESUMO

BACKGROUND: Calotropis procera is a laticiferous plant (Apocynaceae) found in tropical regions all over the world. The ultrastructural characteristics of laticifers, their restricted distribution among different taxonomic groups, and in some species in each clade, as peptidases from latex, make them very attractive for biological analysis. OBJECTIVE: The study aims to investigate the effects of LP-PII-IAA (laticifer protein (LP) sub-fraction II (PII) of C. procera presenting an iodoacetamide-inhibited cysteine proteinase activity) on irinotecan-induced intestinal mucositis, a serious adverse effect of this medicine for the treatment of cancer. METHODS: LP-PII-IAA is composed of closely related isoforms (90%) of peptidases derived from catalysis and an osmotin protein (5%). Animals receiving co-administration of LP-PII-IAA presented a significant decrease in mortality, absence of diarrhea, histological preservation, and normalization of intestinal functions. RESULTS: Clinical homeostasis was accompanied by a reduction in MPO activity and declined levels of IL-1ß, IL-6 and KC, while the IL-10 level increased in LP-PII-IAA-treated animals. COX-2 and NF-kB immunostaining was reduced and the levels of oxidative markers (GSH, MDA) were normalized in animals that received LP-PII-IAA. CONCLUSION: We suggest that peptidases from the latex of Calotropis procera were instrumental in the suppression of the adverse clinical and physiological effects of irinotecan.


Assuntos
Calotropis , Cisteína Proteases , Animais , Calotropis/química , Ciclo-Oxigenase 2 , Interleucina-10 , Interleucina-6 , Iodoacetamida , Irinotecano/farmacologia , Látex/química , Látex/farmacologia , NF-kappa B , Proteínas de Plantas/farmacologia , Proteínas de Plantas/uso terapêutico
2.
J Cell Physiol ; 234(1): 509-520, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29968920

RESUMO

New compounds with promising antidiabetic activity were synthesized. For the first time, a portion of the glibenclamide molecule was bound to a part of the core structure of thiazolidinedione to evaluate insulin secretagogue activity. Following studies in our laboratory, 4-{2-[2-(3,4-dichlorophenyl)-4-oxo-1,3-thiazolidin-3-yl]ethyl}benzene-1-sulfonamide (DTEBS) was selected to evaluate glycemia using the glucose tolerance test and insulin secretagogue activity by E.L.I.S.A. The mechanism of action of this compound was studied by 45 Ca2+ influx and whole-cell patch-clamp in rat pancreatic isolated islets. Furthermore, AGE formation in vitro was investigated. We herein show that this novel hybrid compound (DTEBS) exhibits an insulinogenic index and a profile of serum insulin secretion able to maintain glucose homeostasis. Its mechanism of action is mediated by ATP-sensitive potassium channels (KATP) and L-type voltage-dependent calcium channels (VDCC) and by activating protein kinase C and A (PKC and PKA). In addition, the stimulatory action of the compound on calcium influx and insulin secretion indicates that the potentiation of voltage-sensitive K+ currents (Kv) is due to the repolarization phase of the action potential after secretagogue excitation-secretion in pancreatic islets. Furthermore, under these experimental conditions, the compound did not induce toxicity and the in vitro late response of the compound to protein glycation reinforces its use to prevent complications of diabetes. DTEBS exerts an insulin secretagogue effect by triggering KATP, VDCC, and Kv ionic currents, possibly via PKC and PKA pathway signal transduction, in beta-cells. Furthermore, DTEBS may hold potential for delaying the late complications of diabetes.


Assuntos
Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Compostos de Sulfonilureia/farmacologia , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Ensaio de Imunoadsorção Enzimática , Glucose/metabolismo , Teste de Tolerância a Glucose , Glibureto/química , Glibureto/farmacologia , Humanos , Hipoglicemiantes/síntese química , Insulina/biossíntese , Secreção de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Canais KATP/genética , Técnicas de Patch-Clamp , Proteína Quinase C/genética , Ratos , Transdução de Sinais/efeitos dos fármacos , Compostos de Sulfonilureia/síntese química , Tiazolidinedionas/síntese química , Tiazolidinedionas/farmacologia
3.
Chem Biol Interact ; 279: 95-101, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29122539

RESUMO

Natural polyacetylene compounds have been found mainly in seven botanical families and remain underexplored and understudied, despite its inherent chemical and biological reactivity, due to the presence of conjugated triple bonds. Some polyacetylene glucosides have been found to stimulate glucose uptake in C5BL/ks-db/db obese diabetic mice, and since polyacetylene glucosides previously found in Vernonia scorpioides showed little to none cytotoxicity, in this study the antihyperglycemic potential of a new V. scorpioides polyacetylene glucoside has been accessed in order to shine a new light on the biological activity of this unique scaffold. For the isolation of this new compound an optimized method of Centrifugal Partition Chromatography (CPC) is for the first time described together with its X-ray data. The results demonstrate that 3,4-dihydrovernoniyne-4-O-ß-glucoside has significant effect on glycaemia at low dose 0.5 mg/kg, and pointing that the anti-hyperglycemic effect may be due in part to the inhibition of intestinal disaccharidases.


Assuntos
Glucosídeos/farmacologia , Hipoglicemiantes/farmacologia , Vernonia/química , Animais , Glicemia/efeitos dos fármacos , Glucose , Teste de Tolerância a Glucose , Glucosídeos/química , Hiperglicemia/induzido quimicamente , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/química , Masculino , Modelos Moleculares , Estrutura Molecular , Poli-Inos , Ratos , Ratos Wistar
4.
J Cell Biochem ; 119(6): 4408-4419, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29130561

RESUMO

The aim of the present study was to investigate the mechanism of action of a sulfonamide derivative on glucose uptake in adipose tissue, as well as to characterize the effects of this compound on intestinal disaccharidases and advanced glycation end-products (AGEs) formation. Camphoryl-benzene sulfonamide (CS) was able to stimulate glucose uptake in isolated adipocytes, adipose tissue, and in soleus muscle. The stimulatory effect of the compound (10 µM) on glucose uptake on adipose tissue was blocked by diazoxide, wortmannin, U73122, colchicine, and N-ethylmaleimide. On the other hand, the effects of CS were not blocked by glibenclamide, an inhibitor of the K+ -ATP channel, or even by the inhibitor of protein p38 MAPK, SB 203580. In vivo, this compound reduced intestinal disaccharidase activity, while, in vitro, CS reduced the formation of AGEs at 7, 14, and 28 days of incubation. The stimulatory effect of CS on glucose uptake requires the activation of the K+ -ATP channel, translocation, and fusion of GLUT4 vesicles to the plasma membrane on adipocytes for glucose homeostasis. In addition, the inhibition of disaccharidase activity contributes to the glucose homeostasis in a short-term as well as the remarkable reduction in AGE formation indicates that the CS may prevent of complications of late diabetes.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Membrana Celular/metabolismo , Glucose/metabolismo , Sulfonamidas/farmacologia , Adipócitos/patologia , Tecido Adiposo/patologia , Animais , Membrana Celular/patologia , Complicações do Diabetes/metabolismo , Complicações do Diabetes/patologia , Complicações do Diabetes/prevenção & controle , Dissacarídeos/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Masculino , Ratos , Ratos Wistar
5.
Artif Organs ; 42(3): 297-304, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29027689

RESUMO

Electrochemotherapy (EQT) is a local cancer treatment well established to cutaneous and subcutaneous tumors. Electric fields are applied to biological tissue in order to improve membrane permeability for cytotoxic drugs. This phenomenon is called electroporation or electropermeabilization. Studies have reported that tissue conductivity is electric field dependent. Electroporation numerical models of biological tissues are essential in treatment planning. Tumors of the mouth are very common in dogs. Inadequate EQT treatment of oral tumor may be caused by significant anatomic variations between dogs and tumor position. Numerical models of oral mucosa and tumor allow the treatment planning and optimization of electrodes for each patient. In this work, oral mucosa conductivity during electroporation was characterized by measuring applied voltage and current of ex vivo rats. This electroporation model was used with a spontaneous canine oral melanoma. The model outcomes of oral tumor EQT is applied in different parts of the oral cavity including near bones and the hard palate. The numerical modeling for treatment planning will help the development of new electrodes and increase the EQT effectiveness.


Assuntos
Doenças do Cão/terapia , Eletroquimioterapia/métodos , Melanoma/veterinária , Mucosa Bucal/patologia , Neoplasias Bucais/veterinária , Animais , Simulação por Computador , Doenças do Cão/patologia , Cães , Condutividade Elétrica , Eletroquimioterapia/instrumentação , Eletrodos , Eletroporação/instrumentação , Eletroporação/métodos , Desenho de Equipamento , Masculino , Melanoma/patologia , Melanoma/terapia , Modelos Biológicos , Neoplasias Bucais/patologia , Neoplasias Bucais/terapia , Ratos Wistar
6.
J Ethnopharmacol ; 175: 273-86, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26386380

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The medicinal plant Pterodon pubescens Benth has been traditionally used for a long time to treat rheumatic diseases due to its anti-inflammatory and analgesic activities. The present study aims to evaluate the antinociceptive effect of ethanolic extract from P. pubescens fruits (EEPp) in a model of neuropathic pain in mice. MATERIALS AND METHODS: The phytochemical analysis of EEPp was performed through GC-MS, HPLC and colorimetric analysis. The antinociceptive effects of EEPp (30-300 mg/kg, i.g.) were evaluated on mechanical and thermal (cold or heat) hyperalgesia in neuropathic pain induced by partial sciatic nerve ligation (PSNL) in mice. We also investigated the effects of EEPp on the nociceptive response induced by intrathecal injection (i.t.) of ionotropic (AMPA, NMDA and kainate) and metabotropic (trans-ACPD) glutamate receptor agonists, proinflammatory cytokines such as IL-1ß and TNF-α, as well as TRPV1 and TRPA1 agonists. In addition, we also investigated the safety profile of prolonged treatment with EEPp in mice. RESULTS: The phytochemical analysis showed a higher amount terpenes, being nine sesquiterpenes and seven diterpenes with vouacapan skeletons, as well as a small amount of phenols and flavonoids. The exact mechanism by which EEPp promotes its antinociceptive effect is not yet fully understood, but its oral administration causes significant inhibition of glutamate-, kainate-, NMDA-, trans-ACPD-induced biting responses, as well as of proinflammatory cytokines (TNF-α and IL-1ß) and TRPV1 and TRPA1 channels activators (capsaicin and cinnamaldehyde, respectively). These results may indicate, at least in part, some of the mechanisms that are involved in this effect. In particular, EEPp decreases neuropathic pain and clearly shows, for the first time, a thermal and mechanical hyperalgesia reduction in the model of partial sciatic nerve ligation (PSNL), without inducing tolerance. Furthermore, the prolonged treatment with EEPp (300 mg/kg, i.g.) showed a cumulative effect over 24h, in the 15th day, after last treatment. In addition, the open-field test showed that doses up to 300 mg/kg in both treatments, acute and/or prolonged, did not affect the motor activity of mice. Also, EEPp showed no toxicity according to the serum levels of the renal and hepatic injury indicators or observed macroscopic organs, after PSNL. CONCLUSIONS: Taken together, these results provide the first experimental evidence of the significant antinociceptive effect of EEPp on neuropathic pain without causing side effects, such as sedation or locomotor dysfunction. Moreover, these results appear to be mediated, at least in part, by the inhibition of glutamatergic receptors, TRPV1 and TRPA1 channels and proinflammatory cytokines. Thus, this study adds new scientific evidence and highlights the therapeutic potential of the medicinal plant P. pubescens in the development of phytomedicines for the management of neuropathic pain.


Assuntos
Analgésicos/uso terapêutico , Fabaceae , Neuralgia/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Analgésicos/farmacologia , Animais , Feminino , Frutas , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Neuralgia/metabolismo , Fitoterapia , Extratos Vegetais/farmacologia , Nervo Isquiático/lesões , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/metabolismo , Canal de Cátion TRPA1 , Canais de Cátion TRPV/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
An Acad Bras Cienc ; 87(2 Suppl): 1451-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26312423

RESUMO

Fructose accumulates in tissue and body fluids of patients affected by hereditary fructose intolerance (HFI), a disorder caused by the deficiency of aldolase B. We investigated the effect of acute fructose administration on the biochemical profile and on the activities of the Krebs cycle enzymes in the cerebral cortex of young rats. Rats received a subcutaneous injection of NaCl (0.9 %; control group) or fructose solution (5 µmol/g; treated group). Twelve or 24 h after the administration, the animals were euthanized and the cerebral cortices were isolated. Peripheral blood (to obtain the serum) and cerebral spinal fluid (CSF) from the animals were also collected. It was observed that albumin levels were decreased and cholesterol levels were increased in CSF of animals 12 h after the administration of fructose. In addition, serum lactate levels were increased 12 h after the administration, as compared to control group. Furthermore, malate dehydrogenase activity was increased in cerebral cortex from treated group 24 h after the administration of this carbohydrate. Herein we demonstrate that fructose administration alters biochemical parameters in CSF and serum and bioenergetics parameters in the cerebral cortex. These findings indicate a possible role of fructose on brain alterations found in HFI patients.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Intolerância à Frutose/metabolismo , Frutose/farmacologia , Animais , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Frutose/metabolismo , Masculino , Ratos , Ratos Wistar
8.
Eur J Med Chem ; 96: 504-18, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25951294

RESUMO

Tubulin-interacting agents, like vinca alkaloid and taxanes, play a fundamental role in cancer chemotherapy, making cellular microtubules (MT), one of the few validated anticancer targets. Cancer resistance to classical MT inhibitors has motivated the development of novel molecules with increased efficacy and lower toxicity. Aiming at designing structurally-simple inhibitors of MT assembly, we synthesized a series of thirty-one 3,4,5-trimethoxy-hydrazones and twenty-five derivatives or analogs. Docking simulations suggested that a representative N-acylhydrazone could adopt an appropriate stereochemistry inside the colchicine-binding domain of tubulin. Several of these compounds showed anti-leukemia effects in the nanomolar concentration range. Interference with MT polymerization was validated by the compounds' ability to inhibit MT assembly at the biochemical and cellular level. Selective toxicity investigations done with the most potent compound, a 3,4,5-trimethoxy-hydrazone with a 1-naphthyl group, showed remarkably selective toxicity against leukemia cells in comparison with stimulated normal lymphocytes, and no acute toxicity in vivo. Finally, this molecule was as active as vincristine in a murine model of human acute lymphoblastic leukemia at a weekly dose of 1 mg/kg.


Assuntos
Anisóis/farmacologia , Antineoplásicos/farmacologia , Hidrazonas/farmacologia , Microtúbulos/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Animais , Anisóis/síntese química , Anisóis/química , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Hidrazonas/síntese química , Hidrazonas/química , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Microtúbulos/metabolismo , Modelos Moleculares , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Células Tumorais Cultivadas
9.
Eur J Pharmacol ; 702(1-3): 264-8, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23399767

RESUMO

Rutin is a flavonol glycoside with multiple biological activities and it has been demonstrated that rutin modulates glucose homeostasis. In pancreatic ß-cell, an increase in intracellular calcium concentration triggers exocytosis and thus insulin secretion. The aim of the study reported herein was to investigate the effect of rutin associated intracellular pathways on Ca(2+) uptake in isolated rat pancreatic islets. We focused on the acute effects of rutin on in vivo insulin secretion and the in vitro cellular signaling of pancreatic islets related to this effect. The results show that rutin significantly increased glucose-induced insulin secretion in an in vivo treatment. Moreover, it was demonstrated that rutin stimulated Ca(2+) uptake after 10 min of incubation compared with the respective control group. The involvement of L-type voltage-dependent Ca(2+) channels (L-VDCCs) was evidenced using nifedipine, while the use of glibenclamide and diazoxide demonstrated that the ATP-sensitive potassium (KATP) channels are not involved in the rutin action in pancreatic islets. In conclusion, rutin diminish glycemia, potentiate insulin secretion in vivo and significantly stimulates Ca(2+) uptake in rat pancreatic islets. A novel cellular mechanism of action of rutin in Ca(2+) uptake on pancreatic ß-cells was elucidated. Rutin modulates Ca(2+) uptake in pancreatic islets by opening L-VDCCs, alter intracellular Ca(2+), PLC and PKC signaling pathways, characterizing KATP channel-independent pathways. These findings highlight rutin, a dietary adjuvant, as a potential insulin secretagogue contributing to glucose homeostasis.


Assuntos
Cálcio/metabolismo , Hiperglicemia/metabolismo , Hipoglicemiantes/farmacologia , Insulina/sangue , Ilhotas Pancreáticas/metabolismo , Rutina/farmacologia , Animais , Glicemia/análise , Células Cultivadas , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Masculino , Ratos , Ratos Wistar , Rutina/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
10.
Eur J Appl Physiol ; 111(9): 2015-23, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21249392

RESUMO

Obesity-induced endoplasmatic reticulum (ER) stress has been demonstrated to underlie the induction of obesity-induced JNK and NF-κB activation inflammatory responses, and generation of peripheral insulin resistance. On the other hand, exercise has been used as a crucial tool in obese and diabetic patients, and may reduce inflammatory pathway stimulation. However, the ability of exercise training to reverse endoplasmatic reticulum stress in adipose and hepatic tissue in obesity has not been investigated in the literature. Here, we demonstrate that exercise training ameliorates ER stress and insulin resistance in DIO-induced rats. Rats were fed with standard rodent chow (3,948 kcal kg(-1)) or high-fat diet (5,358 kcal kg(-1)) for 2 months. After that rats were submitted to swimming training (1 h per day, 5 days for week with 5% overload of the body weight for 8 weeks). Samples from epididymal fat and liver were obtained and western blot analysis was performed. Our results showed that swimming protocol reduces pro-inflammatory molecules (JNK, IκB and NF-κB) in adipose and hepatic tissues. In addition, exercise leads to reduction in ER stress, by reducing PERK and eIF2α phosphorylation in these tissues. In parallel, an increase in insulin pathway signaling was observed, as confirmed by increases in IR, IRSs and Akt phosphorylation following exercise training in DIO rats. Thus, results suggest that exercise can reduce ER stress, improving insulin resistance in adipose and hepatic tissue.


Assuntos
Tecido Adiposo/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Resistência à Insulina/fisiologia , Fígado/metabolismo , Obesidade/metabolismo , Condicionamento Físico Animal/fisiologia , Resistência Física/fisiologia , Tecido Adiposo/patologia , Animais , Terapia por Exercício , Proteínas I-kappa B/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fígado/patologia , Masculino , Obesidade/patologia , Obesidade/fisiopatologia , Obesidade/terapia , Fosforilação , Ratos , Ratos Wistar , Natação/fisiologia
11.
J Cell Physiol ; 226(3): 666-74, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20717955

RESUMO

Obesity and insulin resistance are rapidly expanding public health problems. These disturbances are related to many diseases, including heart pathology. Acting through the Akt/mTOR pathway, insulin has numerous and important physiological functions, such as the induction of growth and survival of many cell types and cardiac hypertrophy. However, obesity and insulin resistance can alter mTOR/p70S6k. Exercise training is known to induce this pathway, but never in the heart of diet-induced obesity subjects. To evaluate the effect of exercise training on mTOR/p70S6k in the heart of obese Wistar rats, we analyzed the effects of 12 weeks of swimming on obese rats, induced by a high-fat diet. Exercise training reduced epididymal fat, fasting serum insulin and plasma glucose disappearance. Western blot analyses showed that exercise training increased the ability of insulin to phosphorylate intracellular molecules such as Akt (2.3-fold) and Foxo1 (1.7-fold). Moreover, reduced activities and expressions of proteins, induced by the high-fat diet in rats, such as phospho-JNK (1.9-fold), NF-kB (1.6-fold) and PTP-1B (1.5-fold), were observed. Finally, exercise training increased the activities of the transduction pathways of insulin-dependent protein synthesis, as shown by increases in Raptor phosphorylation (1.7-fold), p70S6k phosphorylation (1.9-fold), and 4E-BP1 phosphorylation (1.4-fold) and a reduction in atrogin-1 expression (2.1-fold). Results demonstrate a pivotal regulatory role of exercise training on the Akt/mTOR pathway, in turn, promoting protein synthesis and antagonizing protein degradation.


Assuntos
Resistência à Insulina , Miocárdio/enzimologia , Obesidade/enzimologia , Condicionamento Físico Animal , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima , Animais , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/farmacologia , Inflamação/patologia , Insulina/metabolismo , Insulina/farmacologia , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Obesidade/patologia , Biossíntese de Proteínas/efeitos dos fármacos , Ratos , Ratos Wistar , Proteínas Ligases SKP Culina F-Box/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
12.
J Physiol ; 588(Pt 12): 2239-53, 2010 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-20421289

RESUMO

Protein hepatocyte nuclear factor 4alpha (HNF-4alpha) is atypically activated in the liver of diabetic rodents and contributes to hepatic glucose production. HNF-4alpha and Foxo1 can physically interact with each other and represent an important signal transduction pathway that regulates the synthesis of glucose in the liver. Foxo1 and HNF-4alpha interact with their own binding sites in the phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) promoters, and this binding is required for their effects on those promoters. However, the effect of physical activity on the HNF-4alpha/Foxo1 pathway is currently unknown. Here, we investigate the protein levels of HNF-4alpha and the HNF-4alpha/Foxo1 pathway in the liver of leptin-deficient (ob/ob) and diet-induced obese Swiss (DIO) mice after acute exercise. The ob/ob and DIO mice swam for four 30 min periods, with 5 min rest intervals for a total swimming time of 2h. Eight hours after the acute exercise protocol, the mice were submitted to an insulin tolerance test (ITT) and determination of biochemical and molecular parameters. Acute exercise improved insulin signalling, increasing insulin-stimulated Akt and Foxo1 phosphorylation and decreasing HNF-4alpha protein levels in the liver of DIO and ob/ob mice under fasting conditions. These phenomena were accompanied by a reduction in the expression of gluconeogenesis genes, such as PEPCK and G6Pase. Importantly, the PI3K inhibitor LY292004 reversed the acute effect of exercise on fasting hyperglycaemia, confirming the involvement of the PI3K pathway. The present study shows that exercise acutely improves the action of insulin in the liver of animal models of obesity and diabetes, resulting in increased phosphorylation and nuclear exclusion of Foxo1, and a reduction in the Foxo1/HNF-4alpha pathway. Since nuclear localization and the association of these proteins is involved in the activation of PEPCK and G6Pase, we believe that the regulation of Foxo1 and HNF-4alpha activities are important mechanisms involved in exercise-induced improvement of glucose homeostasis in insulin resistant states.


Assuntos
Diabetes Mellitus/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Glucose/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Resistência à Insulina , Insulina/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Esforço Físico , Transporte Ativo do Núcleo Celular , Animais , Diabetes Mellitus/genética , Diabetes Mellitus/fisiopatologia , Modelos Animais de Doenças , Regulação para Baixo , Proteína Forkhead Box O1 , Técnica Clamp de Glucose , Glucose-6-Fosfatase/metabolismo , Glicogênio/metabolismo , Resistência à Insulina/genética , Fígado/efeitos dos fármacos , Fígado/fisiopatologia , Masculino , Camundongos , Obesidade/genética , Obesidade/fisiopatologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Natação
13.
Free Radic Res ; 43(10): 957-64, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19672741

RESUMO

Exercise training has demonstrated cardioprotection effects. However, the exact mechanism behind this effect is not is clear. The present study evaluated the effects of 12 weeks of previous treadmill training on the levels of oxidative damage, antioxidant enzyme activity and injury in the myocardium of rats submitted to infarction induced by isoproterenol (ISO). Isoproterenol treatment (80 mg/kg given over 2 days in two equal doses) caused arrhythmias and 60% mortality within 24 h of the last injection in the control group (C + ISO) group when compared with the saline control group (saline). Creatine Kinase--MB levels were markedly increased in hearts from ISO-treated animals in the C + ISO group. Twelve weeks of treadmill training reduced superoxide production, lipid peroxidation levels and protein carbonylation in these animals, as well as increasing the activities and expressions of SOD and CAT. Previous training also reduced CK-MB levels and numbers of deaths by 40%, preventing the deleterious effects of ISO. Based on the data obtained in this study, it is suggested that 12-week treadmill training increases antioxidant enzymes, decreases oxidative damage and reduces the degree of infarction induced by ISO in the hearts of male rats.


Assuntos
Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/prevenção & controle , Condicionamento Físico Animal/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Biomarcadores/sangue , Catalase/metabolismo , Creatina Quinase Forma MB/sangue , Modelos Animais de Doenças , Isoproterenol , Masculino , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/enzimologia , Estresse Oxidativo/fisiologia , Distribuição Aleatória , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
14.
J Cell Physiol ; 221(1): 92-7, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19492410

RESUMO

TRB3 (a mammalian homolog of Drosophila) is emerging as an important player in the regulation of insulin signaling. TRB3 can directly bind to Ser/Thr protein kinase Akt, the major downstream kinase of insulin signaling. Conversely, physical exercise has been linked to improved glucose homeostasis and enhanced insulin sensitivity; however, the molecular mechanisms by which exercise improves glucose homeostasis, particularly in the hepatic tissue, are only partially known. Here, we demonstrate that acute exercise reduces fasting glucose in two models diabetic mice. Western blot analysis showed that 8 h after a swimming protocol, TRB3 expression was reduced in the hepatic tissue from diet-induced obesity (Swiss) and leptin-deficient (ob/ob) mice, when compared with respective control groups at rest. In parallel, there was an increase in insulin responsiveness in the canonical insulin-signaling pathway in hepatic tissue from DIO and ob/ob mice after exercise. In addition, the PEPCK expression was reduced in the liver after the exercise protocol, suggesting that acute exercise diminished hepatic glucose production through insulin-signaling restoration. Thus, these results provide new insights into the mechanism by which physical activity improves glucose homeostasis in type 2 diabetes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glucose/biossíntese , Resistência à Insulina , Fígado/metabolismo , Condicionamento Físico Animal , Animais , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/fisiopatologia , Dieta , Jejum , Glicogênio/metabolismo , Insulina/metabolismo , Fígado/enzimologia , Fígado/fisiopatologia , Masculino , Camundongos , Camundongos Obesos , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
15.
J Physiol ; 587(Pt 10): 2341-51, 2009 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-19332486

RESUMO

Insulin signalling in the hypothalamus plays a role in maintaining body weight. The forkhead transcription factor Foxo1 is an important mediator of insulin signalling in the hypothalamus. Foxo1 stimulates the transcription of the orexigenic neuropeptide Y and Agouti-related protein through the phosphatidylinositol-3-kinase/Akt signalling pathway, but the role of hypothalamic Foxo1 in insulin resistance and obesity remains unclear. Here, we identify that a high-fat diet impaired insulin-induced hypothalamic Foxo1 phosphorylation and degradation, increasing the nuclear Foxo1 activity and hyperphagic response in rats. Thus, we investigated the effects of the intracerebroventricular (i.c.v.) microinfusion of Foxo1-antisense oligonucleotide (Foxo1-ASO) and evaluated the food consumption and weight gain in normal and diet-induced obese (DIO) rats. Three days of Foxo1-ASO microinfusion reduced the hypothalamic Foxo1 expression by about 85%. i.c.v. infusion of Foxo1-ASO reduced the cumulative food intake (21%), body weight change (28%), epididymal fat pad weight (22%) and fasting serum insulin levels (19%) and increased the insulin sensitivity (34%) in DIO but not in control animals. Collectively, these data showed that the Foxo1-ASO treatment blocked the orexigenic effects of Foxo1 and prevented the hyperphagic response in obese rats. Thus, pharmacological manipulation of Foxo1 may be used to prevent or treat obesity.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica/efeitos dos fármacos , Hipotálamo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Obesidade/tratamento farmacológico , Oligonucleotídeos Antissenso/farmacologia , Tecido Adiposo Branco/anatomia & histologia , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Dieta , Ingestão de Energia/efeitos dos fármacos , Epididimo/anatomia & histologia , Epididimo/efeitos dos fármacos , Fatores de Transcrição Forkhead/genética , Hipotálamo/efeitos dos fármacos , Insulina/administração & dosagem , Insulina/sangue , Insulina/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , Proteínas do Tecido Nervoso/genética , Obesidade/sangue , Obesidade/patologia , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/genética , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Receptor de Insulina/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo
16.
J Physiol ; 587(Pt 9): 2069-76, 2009 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-19273580

RESUMO

PGC-1alpha expression is a tissue-specific regulatory feature that is extremely relevant to diabetes. Several studies have shown that PGC-1alpha activity is atypically activated in the liver of diabetic rodents and contributes to hepatic glucose production. PGC-1alpha and Foxo1 can physically interact with one another and represent an important signal transduction pathway that governs the synthesis of glucose in the liver. However, the effect of physical activity on PGC-1alpha/Foxo1 association is unknown. Here we investigate the expression of PGC-1alpha and the association of PGC-1alpha/Foxo1 in the liver of diet-induced obese rats after acute exercise. Wistar rats swam for two 3 h-long bouts, separated by a 45 min rest period. Eight hours after the acute exercise protocol, the rats were submitted to an insulin tolerance test (ITT) and biochemical and molecular analysis. Results demonstrate that acute exercise improved insulin signalling, increasing insulin-stimulated Akt and Foxo1 phosphorylation and decreasing PGC-1alpha expression and PGC-1alpha/Foxo1 interaction in the liver of diet-induced obesity rats under fasting conditions. These phenomena are accompanied by a reduction in the expression of gluconeogenesis genes, such as phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphate (G6Pase). Thus, these results provide new insights into the mechanism by which exercise could improve fasting hyperglycaemia.


Assuntos
Gorduras na Dieta/efeitos adversos , Fatores de Transcrição Forkhead/metabolismo , Fígado/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Obesidade/fisiopatologia , Resistência Física , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Masculino , Obesidade/etiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...